Negative compressibility in graphene-terminated black phosphorus heterostructures

نویسندگان

  • Xiaolong Chen
  • Zefei Wu
  • Shuigang Xu
  • Yingying Wu
  • Tianyi Han
  • Jiangxiazi Lin
  • Brian Skinner
  • Yuan Cai
  • Yuheng He
  • Chun Cheng
  • Ning Wang
چکیده

Negative compressibility in graphene-terminated black phosphorus heterostructures. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Negative compressibility is a many-body effect wherein strong correlations give rise to an enhanced gate capacitance in two-dimensional (2D) electronic systems. We observe capacitance enhancement in a newly emerged 2D layered material, atomically thin black phosphorus (BP). The encapsulation of BP by hexagonal boron nitride sheets with few-layer graphene as a terminal ensures ultraclean heterostructure interfaces, allowing us to observe negative compressibility at low hole carrier concentrations. We explain the negative compressibility based on the Coulomb correlation among in-plane charges and their image charges in a gate electrode in the framework of Debye screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-Nanodiamond Heterostructures and their application to High Current Devices

Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applica...

متن کامل

Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus.

Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D systems. Indeed, th...

متن کامل

Two-Dimensional Material Nanophotonics

The emerging two-dimensional (2D) materials exhibit a wide range of electronic properties, ranging from insulating hexagonal boron nitride (hBN), semiconducting transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), to semi-metallic graphene. The plethora of 2D materials together with their heterostructures, which are free of the traditional...

متن کامل

Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis.

Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles cou...

متن کامل

Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single cryst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016